p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.28C22, C4⋊Q8⋊6C2, C8⋊C4⋊10C2, (C2×C4).41D4, Q8⋊C4⋊19C2, D4⋊C4.7C2, C4.16(C4○D4), C4⋊C4.19C22, (C2×C8).54C22, C4.4D4.6C2, C2.20(C8⋊C22), (C2×C4).114C23, (C2×D4).26C22, C22.110(C2×D4), (C2×Q8).22C22, C2.12(C4.4D4), C2.20(C8.C22), SmallGroup(64,170)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.28C22
G = < a,b,c,d | a4=b4=c2=1, d2=b, ab=ba, cac=a-1b2, dad-1=ab2, cbc=b-1, bd=db, dcd-1=a2b-1c >
Character table of C42.28C22
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ16 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 20 25 13)(2 17 26 10)(3 22 27 15)(4 19 28 12)(5 24 29 9)(6 21 30 14)(7 18 31 11)(8 23 32 16)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(2 28)(3 7)(4 26)(6 32)(8 30)(9 20)(10 16)(11 18)(12 14)(13 24)(15 22)(17 23)(19 21)(27 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,20,25,13)(2,17,26,10)(3,22,27,15)(4,19,28,12)(5,24,29,9)(6,21,30,14)(7,18,31,11)(8,23,32,16), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,28)(3,7)(4,26)(6,32)(8,30)(9,20)(10,16)(11,18)(12,14)(13,24)(15,22)(17,23)(19,21)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,20,25,13)(2,17,26,10)(3,22,27,15)(4,19,28,12)(5,24,29,9)(6,21,30,14)(7,18,31,11)(8,23,32,16), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (2,28)(3,7)(4,26)(6,32)(8,30)(9,20)(10,16)(11,18)(12,14)(13,24)(15,22)(17,23)(19,21)(27,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,20,25,13),(2,17,26,10),(3,22,27,15),(4,19,28,12),(5,24,29,9),(6,21,30,14),(7,18,31,11),(8,23,32,16)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(2,28),(3,7),(4,26),(6,32),(8,30),(9,20),(10,16),(11,18),(12,14),(13,24),(15,22),(17,23),(19,21),(27,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C42.28C22 is a maximal subgroup of
C42.5C23 C42.8C23 C42.366C23 C42.367C23 C42.385C23 C42.387C23 C42.410C23 C42.411C23 C42.41C23 C42.43C23 C42.46C23 C42.48C23 C42.49C23 C42.51C23 C42.54C23 C42.56C23 C42.508C23 C42.510C23 C42.511C23 C42.512C23 C42.514C23 C42.516C23 C42.517C23 C42.518C23
C42.D2p: C42.239D4 C42.242D4 C42.243D4 C42.255D4 C42.256D4 C42.257D4 C42.258D4 C42.271D4 ...
C4p⋊Q8⋊C2: C42.7C23 C42.10C23 C42.425C23 C42.426C23 C12⋊Q8⋊C2 (C2×C8).D6 C20⋊Q8⋊C2 Q8⋊C4⋊D5 ...
C42.28C22 is a maximal quotient of
C42.24Q8 C2.(C8⋊D4) C2.(C8⋊2D4) (C2×C4).24D8 (C2×C4).19Q16 C4⋊C4.Q8
C42.D2p: C42.110D4 C42.125D4 C42.20D6 C42.62D6 C42.82D6 C42.20D10 C42.62D10 C42.82D10 ...
C4⋊C4.D2p: (C2×D4)⋊Q8 (C2×Q8)⋊Q8 C4⋊C4.94D4 C12⋊Q8⋊C2 (C2×C8).D6 C20⋊Q8⋊C2 Q8⋊C4⋊D5 C28⋊Q8⋊C2 ...
Matrix representation of C42.28C22 ►in GL6(𝔽17)
16 | 9 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 3 | 13 | 13 |
0 | 0 | 14 | 9 | 0 | 4 |
0 | 0 | 5 | 5 | 12 | 7 |
0 | 0 | 0 | 12 | 14 | 5 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 4 | 4 | 16 | 15 |
0 | 0 | 13 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 4 | 4 | 16 | 15 |
0 | 0 | 0 | 13 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 15 | 5 | 0 |
0 | 0 | 5 | 5 | 12 | 7 |
0 | 0 | 8 | 3 | 13 | 13 |
0 | 0 | 3 | 0 | 2 | 14 |
G:=sub<GL(6,GF(17))| [16,13,0,0,0,0,9,1,0,0,0,0,0,0,8,14,5,0,0,0,3,9,5,12,0,0,13,0,12,14,0,0,13,4,7,5],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,4,13,0,0,1,0,4,0,0,0,0,0,16,1,0,0,0,0,15,1],[1,4,0,0,0,0,0,16,0,0,0,0,0,0,1,0,4,0,0,0,0,16,4,13,0,0,0,0,16,0,0,0,0,0,15,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,2,5,8,3,0,0,15,5,3,0,0,0,5,12,13,2,0,0,0,7,13,14] >;
C42.28C22 in GAP, Magma, Sage, TeX
C_4^2._{28}C_2^2
% in TeX
G:=Group("C4^2.28C2^2");
// GroupNames label
G:=SmallGroup(64,170);
// by ID
G=gap.SmallGroup(64,170);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,103,362,332,50,963,117,1444,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^2=1,d^2=b,a*b=b*a,c*a*c=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c=b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c>;
// generators/relations
Export
Subgroup lattice of C42.28C22 in TeX
Character table of C42.28C22 in TeX